Development of a Sub-Glacial Radio Telescope for the Detection of Gzk Neutrinos
Description
The goal of the project presented in this book is to detect neutrinos created by resonant interactions of ultrahigh energy cosmic rays on the CMB photon field filling the Universe. In this pioneering first analysis, the author puts forward much of the analysis framework, including calibrations of the electronic hardware and antenna geometry, as well as the development of algorithms for event reconstruction and data reduction. While only two of the 37 stations planned for the Askaryan Radio Array were used in this assessment of 10 months of data, the analysis was able to exclude neutrino fluxes above 10 PeV with a limit not far from the best current limit set by the IceCube detector, a result which establishes the radio detection technique as the path forward to achieving the massive volumes needed to detect these ultrahigh energy neutrinos.
About this Author
Thomas Meures earned his Diploma in physics at the RWTH-Aachen University in 2010 with a thesis about the reciprocity calibration of acoustic hydrophones in water and ice, written under the supervision of Prof. Dr. Christopher Wiebusch. For his PhD studies he moved from acoustic research to radio neutrino detection at the Université libre de Bruxelles with Prof. Dr. Kael Hanson. Currently he is working on new developments of electronics for astroparticle physics experiments at the University of Wisconsin.
If the product is in stock at the store nearest you, we suggest you call ahead to have it set aside for you, or you may place an order online and choose in-store pickup.