Account Login Winnipeg Toll-Free: 1-800-561-1833 SK Toll-Free: 1-877-506-7456 Contact & Locations

parsed(2024-01-03) - pubdate: 2024-01-03
pub date: 1704261600
today: 1695358800, pubdate > today = true

nyp: 1;

Near Extensions and Alignment of Data in R^n

Whitney extensions of near isometries, shortest paths, equidistribution, clustering and non-rigid alignment of data in Euclidean space

January 3, 2024 | Hardcover
ISBN: 9781394196777
We will confirm the estimated shipping time with you when we process your order.
Checking Availibility...

This title will be released on Jan 3, 2024. Pre-order now.


Comprehensive resource illustrating the mathematical richness of Whitney Extension Problems, enabling readers to develop new insights, tools, and mathematical techniques

The Whitney Near Extension Problem demonstrates a range of hitherto unknown connections between current research problems in engineering, mathematics, and data science, exploring the mathematical richness of near Whitney Extension Problems, and presenting a new nexus of applied, pure and computational harmonic analysis, approximation theory, data science, and real algebraic geometry. For example, the book uncovers connections between near Whitney Extension Problems and the problem of alignment of data in Euclidean space, an area of considerable interest in computer vision.

Written by a highly qualified author, The Whitney Near Extension Problem includes information on:

  • Areas of mathematics and statistics, such as harmonic analysis, functional analysis, and approximation theory, that have driven significant advances in the field
  • Development of algorithms to enable the processing and analysis of huge amounts of data and data sets
  • Why and how the mathematical underpinning of many current data science tools needs to be better developed to be useful
  • New insights, potential tools, and mathematical techniques to solve problems in Whitney extensions, signal processing, shortest paths, clustering, computer vision, optimal transport, manifold learning, minimal energy, and equidistribution

Providing comprehensive coverage of several subjects, The Whitney Near Extension Problem is an essential resource for mathematicians, applied mathematicians, and engineers working on problems related to data science, signal processing, computer vision, manifold learning, and optimal transport.

We're sorry, but this item is not eligible for a Reader Reward discount.

About this Author

Steven B Damelin earned his BSc (Hon), Masters and PhD at the University of the Witwatersrand and is currently a Mathematical Scientist and Sponsored Affiliate at the Department of Mathematics, University of Michigan. His research interests include Approximation theory, Data Science, Manifold Learning, Computer Vision, Alignment and Signal Processing.

ISBN: 9781394196777
Format: Hardcover
Pages: 224
Publisher: Wiley
Published: 2024-01-03

If the product is in stock at the store nearest you, we suggest you call ahead to have it set aside for you, or you may place an order online and choose in-store pickup.